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ABSTRACT: 

There is a deluge of data flowing across the network as a result of the proliferation of various 

linked devices, such as sensors, mobile, wearable, and other IoT devices. Machine learning 

(ML) operations often include moving data from the internet of things (IoT) to a central 

server, which increases network traffic and introduces delays. By bringing processing closer 

to the periphery of the network and the data sources, edge computing may solve such 

problems. However, ML tasks are not well-suited to edge computing because to its restricted 

processing capability. Thus, the purpose of this article is to explore ways to integrate cloud 

and edge computing in order to analyse data from the Internet of Things (IoT) by making use 

of edge nodes to minimise data transfer. Feature learning is executed on the adjacent edge 

node to process data close to the source, once sensors are grouped according to locations. We 

also take similarity-based processing into account while making comparisons. Machine 

learning is used to carry out feature extraction. The learned autoencoder's encoder component 

is stored on the edge, while the decoder component is stored in the cloud. Human activity 

recognition using sensor data was the task that was evaluated. The findings demonstrate that 

sliding windows, when used during the preparation phase, allow for data reduction on the 

edge of up to 80% without noticeably compromising accuracy 
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Introduction 
From 18 billion in 2017 to more than 28 billion in 2022, according to CISCO's projections [1]. With 

approximately 14.6 billion units, more than 50% of those devices will be interconnected amongst 

machines. The proliferation of connected devices and the deluge of data they produce will cause a rise 

in network traffic. After reaching 1.5 zettabytes in 2017, Cisco predicts that yearly worldwide internet 

traffic will reach 4.8 zettabytes by 2022 [1]. This will have both good and bad effects on the 

communication infrastructure. On one hand, it will lead to the development of new applications and 

services and the expansion of current ones. On the other hand, it will raise the demand for network 

bandwidth and strain the system. 

 

With the help of the Internet of Things (IoT), everyday objects may share information about their 

surroundings with one another and with the rest of the world online. The capacity to analyse this data 

is crucial to the realisation of smart systems like smart cities, smart healthcare, smart transportation, 

and smart energy, which are supported by the IoT [2]. However, environmental monitoring and data 

transmission to a more powerful system, typically the cloud or a centralised system, for processing 

and storage have traditionally been the primary functions of most IoT edge devices, like sensors, since 

they lack the computational capabilities to execute complex data analytics computations [3]. 
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Accordingly, conventional Internet of Things (IoT) data analytics include uploading data to a cloud 

service, having that data analysed, and then providing the results to yet another device. An example of 

this would be sending process monitoring data from a smart factory to a data centre hundreds of miles 

away, where it would be stored and optimised. Then, the factory would get the findings. Both network 

traffic and data transfer latencies are increased by this procedure. Unfortunately, the linked devices do 

not have the processing power to do data analytics computations on their own. 

 

By integrating cloud and edge computing, we can do complex data analytics without increasing the 

load on the Internet of Things (IoT) networks or the delays that come with it. In order to decrease 

network traffic and latencies, edge computing (EC) moves processing to the network's periphery and 

data sources, rather than the cloud or a centralised system. Despite EC's widespread acclaim for 

applications like content distribution and mobile task offloading, its application to data analytics has 

been slow to catch on [6, 7]. 

 

A number of fields have seen recent success using deep learning (DL), such as picture categorization 

[8] and human activity recognition (HAR) [9]. Data analytics for the Internet of Things (IoT) benefit 

from DL's representation learning and data transformation capabilities, which allow for the learning of 

useful characteristics. One subset of DL, deep autoencoders (AEs) are NNs that have been 

unsupervisedly trained to learn data encoding. Learning the reconstruction alongside the encodings 

allows AE to recover its inputs from the compressed encodings, although at the expense of some data. 

 

This article delves into the topic of Internet of Things data analytics by merging cloud and edge 

computing. The key findings include a decrease in network traffic and latency for ML jobs through 

the use of edge nodes and an assessment of the amount of data reduction that can be accomplished on 

the edge without significantly affecting the accuracy of ML tasks. The role of edge nodes is to reduce 

the amount of data transferred to the cloud by acting as middlemen between the cloud and Internet of 

Things devices. Edge computing makes use of the trained AE's encoder component to generate data 

encodings before sending them to the cloud. You can utilise encoded data straight for an ML job in 

the cloud, or you can use the decoder component of the AE to recover the original data before using it 

for the ML work. 

 

This study investigates feature learning from fused data, data grouped by source locations, and data 

categorised according to sensor similarities, all of which are important considerations since IoT data 

might come from many sensors and places. In this test case, HAR is derived from data collected by 

sensors placed on various human body parts, such as gyroscopes and accelerometers. The results 

demonstrate that the proposed method may significantly cut transmitted data by 80% while 

maintaining high HAR accuracy. What follows is an outline of the rest of the article. Part II gives 

some context, Part III talks about previous work in the field, and Parts IV and V show the edge-cloud 

ML model and assessment technique, respectively. The findings are detailed in Section VI. 

Section VII serves as the article's last section. 

 

II- Context 
In this part, we will go over DL-based dimensionality reduction and EC. 

 

A.Edge Computing 

Cloud computing and other centralised infrastructure systems store data, run business logic and do 

data analytics at a distance from both the consumers and the sources of the data. The pay-as-you-go 

pricing mechanism, minimal starting cost, high scalability, and dependability are some of the major 

advantages they provide. However, it is not practical or even viable to move all data to the cloud for 

processing due to zettabyte-sized traffic and the growth of linked devices. EC has arisen as a solution 

to these problems by relocating computing to data sources and the periphery of the network [6]. 

Many features of fog computing are similar to those of EC. Fog and edge computing is sometimes 

thought to mean the same thing [10], but edge computing is mainly concerned with nodes near 

Internet of Things (IoT) devices, and fog may refer to any resource between the end device and the 

cloud. For the purposes of this study, "edge" might be either the end devices themselves, such as 
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sensor nodes or cellphones, or the computing nodes that are physically near the network's periphery, 

like edge servers. 

 

Reducing network traffic is the primary goal of edge computing, which is why it moves processing 

closer to the data sources. Mobile edge computing (EC) has been the subject of much research in 

mobile computing for its ability to decrease network latencies, enhance user experience, decrease 

battery usage, and bring location awareness by moving processing and data storage to the edge, such 

as base stations [11]. Content delivery and caching, as well as other applications requiring extremely 

low latency, are ideal for EC [12]. The edge computing resources are not up to pace with the cloud 

resources, despite the fact that EC offers the benefit of lower traffic. Therefore, edge devices aren't the 

best choice for computationally heavy applications like ML. However, by doing some computation on 

the edge, cloud computing may be supplemented, resulting in reduced network traffic and delays. 

 

B.Deep Learning 

Deep learning (DL) is a subset of machine learning (ML) that relies on models with several 

computational layers to learn data representations at varying degrees of abstraction [13]. Many 

disciplines have shown success with DL, including vision tasks, audio recognition, and natural 

language processing, thanks to its representation capabilities, capacity to train complicated models, 

and diversity of architectures [2]. 

 

For the purpose of unsupervised learning of data representations (encodings), AEs are a subset of DL 

methods. The core of an AE is a layer of bottleneck neural networks (NNs) that prohibit the network 

from just replicating the input to output and instead force it to learn data representations, thereby 

making it an NN that learns to recreate its inputs. Both the encoder and the decoder, which may each 

have several stacked layers, make up an AE. Typically, the number of neurons decreases from the 

input layer all the way to the last encoder layer since the encoder section of the network is responsible 

for lowering dimensionality (encoding). On the other hand, layers with a growing number of neurons 

make up the decoder, which is responsible for reassembling the input signal from encoded 

information. While AEs have several potential applications, including as anomaly identification and 

noise reduction, they are most commonly employed as a preprocessing step in the ML pipeline [2]. By 

feeding the encoder network's outputs (encodings) into another ML model, the learned AE may be 

utilised for dimensionality reduction. 

 

Prior to data transmission to the cloud, the learned AE's encoder component is placed on the edge in 

order to decrease dimensionality. Additionally, the decoder is used in the cloud to restore the initial 

signal. 

 

Related Work 
Computing proximity to data sources has led to EC's rising popularity, particularly in applications that 

demand quick reaction times or have restricted bandwidth. Smart street lighting [14], face 

identification [15], smart manufacturing [16], and vehicular networks [17] are only a few examples of 

the many EC applications that have been widely adopted and studied. 

 

Concerning computation, edge offloading, and communication methods for edge-based computing, 

Wang et al. [18] offered a review of mobile edge networks. Internet of Things (IoT), linked cars, 

content distribution, and big data analysis are some of the application cases that their study 

emphasises. Meanwhile, real-time analytics was named as one of the unanswered questions by Wang 

et al. [18]. In a similar vein, Abbas et al. [12] examined mobile EC and similarly recommended big 

data analytics for further study. Although Wang et al. [18] and Abbas et al. [12] concentrated on EC 

in mobile devices, El-Sayed et al. [6] emphasised its usage in the Internet of Things. After looking at 

EC, multi-cloud, fog, and cloud characteristics side by side, they found that EC had the best latencies 

and lowest bandwidth utilisation. Like Wang et al. [18] and Abbas et al. [12], Mao et al. [19] consider 

data analytics to be a promising area for future study in EC, and they also view EC as an essential 

enabling technology for the Internet of Things (IoT) concept. 
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Discussion in the polls [6, 12, 18, 19] focuses on the use of EC in data analytics and how crucial it is 

for the Internet of Things (IoT) to manage the exponential growth in the number of connected devices. 

Through the integration of cloud and edge computing, our research adds to the use of EC for data 

analytics in the delivery of ML applications. 

 

A widely-discussed use case and application of EC is smart cities. Cloud and fog-enabled smart city 

services were investigated by Mohammad et al. [20] in relation to service-oriented middleware. They 

centred on the middleware rather than the particular smart city services. The advantages of EC in 

relation to reaction time were shown in their trials. A hierarchical fog computing architecture was 

introduced by Tang et al. [21] to assist linked devices in smart cities. The suggested model 

incorporates the cloud as the uppermost layer in addition to the fog node hierarchy. Preliminary 

results showed that the suggested architecture was feasible when tested on an event detection job in a 

smart pipeline monitoring system. Though we use cloud and edge/fog technologies, our research 

varies from those of Mohammad et al. [20] and Tang et al. [21] by including a thorough assessment of 

the proposed edge-cloud architecture. 

 

Wang et al.'s [22] research on using cloud and fog computing together for real-time traffic control is 

another instance of the cloud-fog concept. Their technology is structured such that automobiles 

communicate with the cloud as edge nodes and roadside equipment as cloudlets. While they address 

message passing and processing in their study [22], we address ML for the Internet of Things in our 

work. 

 

on their proposal for big-scale analytics on Smart City IoT data, he et al. [23] laid up a multi-tier fog 

computing approach. Fogs can enhance the performance of smart city services, according to their 

evaluation of the suggested model on categorization tasks. In contrast to He et al. [23], which focuses 

on fog architecture, our study utilises both the edge and cloud to accomplish the ML goal. 

 

Fog computing has other uses in the medical field as well. By integrating intelligence between sensors 

and the cloud, Rahmani et al. [24] introduced a fog-assisted architecture for smart e-Health. Data 

filtering, compression, fusion, and analysis may be handled by fog nodes, according to their study, 

with minimum data transferred to the cloud because of their impressive capabilities. However, a 

significant portion of the computation for our study is still carried out on the cloud. Another group 

that addressed healthcare was Ritrovato et al. [25], who suggested a method for EC anomaly detection 

in streaming data. Our research is on ML algorithms, whereas theirs is on stream processing methods. 

Our approach integrates edge and cloud computing for ML tasks, which sets it apart from the 

examined research. While not all of these research used edge-cloud architectures for ML tasks, 

several did [20], [22], and [24]. In order to complete ML jobs in the cloud, processing must occur on 

the edge, but network traffic must be kept to a minimum. Tang et al. [21] is the closest work to ours in 

terms of edge ML and feature extraction; however, they restrict their feature extraction to the signal's 

mean and variance, which limits the applications they may examine, in contrast to our general method 

based on AEs. In addition, we assess the extent to which feature reduction is feasible without 

substantially affecting ML accuracy. 

 

Several studies in this area should be included as our study assesses the offered method on sensor-

based (HAR). The study of Wang et al. [26] reviewed DL techniques for activity identification, 

highlighting the relevance of model selection and preprocessing, including the sliding window 

technique, given that DL has been widely utilised for HAR [26] and has been highly effective. In their 

study on feature engineering for HAR, Zdravevski et al. [27] collected 3,232 features from the 

MHEALTH dataset and subsequently reduced them using a combination of feature reduction 

strategies. Sliding windows and feature creation were also utilised in the investigation of HAR model 

personalisation by Ferrari et al. [28]. After extracting 118 characteristics and creating segments of 

predetermined size, Li et al. [29] set out to recognise activity transitions. The next step was to 

examine each segment individually to see whether any activity had changed inside it. 

 

Both EC and network traffic are unrelated to these HAR experiments. We follow the trend of other 
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HAR research that employ the sliding window approach [26]-[28] because of how much better it 

makes the results. We study the effect of the sliding window approach on edge data reduction, 

whereas others focus on its influence on accuracy. While prior research has shown that AE and PCA 

can increase HAR accuracy, our study finds that they actually perform better at reducing network 

traffic. 

 

IV- Model of the Edge-Cloud ML system 

Figure 1 shows the general layout of the edge-cloud ML model, and the pieces that make it up 

preprocessing, data reduction, and Cloud ML are broken down into their respective parts below. 

 

A. Initial Steps 

Unlike standard ML, which sends data straight to the cloud, the edge-cloud ML process begins by 

passing data from IoT sensors to the edge for preprocessing. Although the sliding window approach is 

experimentally assessed for its potential influence, normalisation is an integral part of the 

preprocessing. 

 

No. 1: Standardisation Data is normalised using standardisation (z-score) to prevent features with big 

values from dominating and to increase training convergence. Although min-max scaling is an 

alternative to standardisation, the latter was chosen for its robustness against outliers. All features are 

resized such that their means are zero and their variances are one, as specified by 

 

 

 

 

 

where  

the original feature value is represented by x, the feature mean and standard deviation by μ and σ, and 

the normalised value is denoted by xˆ. 

2) Sliding Window: Currently, a data sample for a given time step t may include readings from 

several sensors in various places. The Windows sliding approach is used to prepare time series data 

for ML algorithms or to assist the model grasp time dependencies [30]. The sliding window is a 

highly effective tool in HAR [30]. This research looks on the possibility of feature reduction 

following the application of the sliding window approach and how it affects the amount of data 

reduction. For each sample, the l × f matrix is produced by combining all readings from the first l time 

steps with the f-number of features and a sliding window of length l. The second sample includes data 

from time step k to k + l, after which the window slides for k steps. The remaining samples are 

created as the window continues to slide. To increase the amount of training samples and enable the 

input to catch changes in temporal patterns, this study uses the sliding step k = 1. After training the 

system, several sliding phases can be implemented according to use case details and data transit 

limitations. 

 

B. Reducing Data 

To lessen the load on the cloud, data reduction takes place locally. Choosing the method and the 

quantity of characteristics are two of the obstacles to feature reduction. While ML precision is the 

main factor in centralised systems, network traffic is an additional consideration in an edge-cloud 

setting. It is still difficult to find the optimal trade-off between feature reduction and traffic reduction 

without sacrificing ML task accuracy, even if AEs are ideal for edge feature learning. Normalised data 

or samples generated using the sliding window method can be used for data reduction directly. There 

is no difference in the data reduction strategy between using the sliding window technique and not 

using it. Reversible and nonreversible methods are both taken into account. 

 

 1) Reversible: Methods that may be used to decrease data while still retaining the capacity to 

replicate the original data are known as reversible techniques. These methods use edge computing to 

reduce data before sending it over the network. In the cloud, either the reduced data or the original 

data can be subjected to machine learning (ML), or both can be done simultaneously. Since trained 
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AEs allow encoders to minimise data on the edge and decoders to recover original data on the cloud, 

they are the primary focus here. The efficiency of AE is contrasted with that of PCA for data 

reduction [31]. The eigenvectors allow for the reconstruction of the original data when principal 

component analysis (PCA) is used to decrease dimensionality. Data reconstruction accuracy in AE 

and PCA is proportional to the dimensionality reduction level. 

 

All sensors, location-based, and similarity-based situations are evaluated for both reversible 

approaches, AE and PCA, as shown in Fig. 1. When using an all-sensors technique, all of the data is 

combined and then data reduction is applied to the combined dataset. 

 

As shown in Figure 2, the location-based scenario takes into account data reduction using a cluster of 

sensors that are colocated. As an example, the four sensors at site 1 are in close proximity to one 

other, therefore their data is relayed to the edge node E1. The data from position 2 sensors is also sent 

to E2. The goal is to minimise the distance data must travel before reduction by keeping the edge 

portion of the processing near to the data sources. As a result of a shared reduction of data at each 

receiving node, each edge node has its own AE. 

 

Sensors are grouped according to how similar they are in the similarity-based scenario shown in 

Figure 3. All accelerometers may stand for one set, and all gyroscopes for another. This can lead to 

sensors being further away from the edge nodes, but it will also produce more consistent data sets. 

Just as in the location-based scenario, every edge node has its own AE. 

 

2) Nonreversible: Methods that do not allow for the restoration of the original data set following data 

reduction are considered nonreversible. In this case, we take into account the vector magnitude, which 

is appropriate for sensors like gyroscopes and accelerometers that measure values in three-

dimensional space. Here is how the dimensionality is reduced: 

 

 

 

 

 

The  

vector magnitude is denoted by d, and the three variables x, y, and z are the measurements in Euler 

coordinates. Consequently, there is a 3:1 ratio between vector magnitude and dimensionality 

reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The architecture of the edge-cloud ML system. 
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Figure 2: Reducing data depending on location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Data reduction based on similarities. 

 

C. Machine learning on the cloud 

After data reduction at the edge, it is transferred to the cloud to undergo additional ML processing. 

Figure 1 shows that the ML work may be executed in two different methods. Reproducing the original 

data and using it for the ML job is the first alternative. Assuming the reversible approach was 

employed for data reduction, this becomes feasible. Another choice, applicable to both reversible and 

nonreversible reduction methods, is to perform the ML job directly on the reduced data. Training the 

ML model using the recreated data is computationally more expensive than with the reduced data 

because to the increased number of characteristics in the reproduced data. 

 

V- Approach to Assessment 

The dataset and assessment technique are presented in this section. 

 

A. Datasets and Preprocessing 

The proposed method was tested using the HAR task and the (Mobile Health) MHEALTH dataset 

[32]. With the use of sensors, we can identify the many sorts of activities, including walking, running, 

or sitting. Ten people's motion captures from various activities are housed in the MHEALTH dataset. 
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Each of the three sensor types accelerometer, gyroscope, and magnetometer obtained three readings 

along each of the three axes that make up the recordings. While the accelerometer is the only sensor 

on the chest, the other two are attached to the left and right wrists. A grand total of 21 characteristics 

are thus achieved: Seven sensors along three dimensions. Twelve distinct types of physical activity 

labels are used, with a sample rate of fifty hertz. Throughout the studies, data from all people is 

combined and used in this manner. The data was divided 80:20 across the training and test sets, 

accordingly. Preprocessing can proceed with or without the sliding window, as shown in Fig. 1, 

following data normalisation. We take a look at three different window sizes 25, 50, and 100 time 

steps to see how they affect the accuracy of activity detection and the achievable decrease rate. Such 

dimensions are 1/2, 1, and 2 s at a sampling rate of 50 Hz. 

 

B. Reducing Data 

We take into account both reversible and nonreversible edge data reduction techniques. 

1) Reversible: A total of three scenarios all sensors, location-based, and similarity-based are tested 

using reversible data reduction options, with and without a sliding window. With a 100-window-size 

window, the reversible approach yielded the same amount of features in all three cases (Table I). 

"Direct" is used to describe the method that does not include the sliding window in the table and the 

rest of the article. 

 

There were trials conducted for reductions of80%,90%, and 95%; the table shows the number of 

characteristics before and after reductions of 70% and 66%. We chose a 66% initial reduction to align 

with the maximum reduction of the vector magnitude technique, which is 3:1. Because the whole 

activity takes place on only one node, there is no such thing as an edge position for any sensor. Edge 

location specifies a node where data is gathered for location-based and similarity-based methods. 

Three nodes represent sensors on the arm, leg, and chest in the location-based method. Nodes in the 

similarity-based method represent different kinds of sensors, such as accelerometers, gyroscopes, and 

magnetometers. As seen in Table I, the number of original features for the direct approach is nine, as 

an example, because L2 in location-based approaches collects information from three sensors. This is 

because each sensor has three axes. As an example, with a location-based method with L2, the 

number of features is 9 × 100, which is the product of the number of features and the length of the 

window in a scenario with windows. 

 

Keep in mind that a data reduction rate of 66% is the minimum acceptable for using the direct option. 

There are currently relatively few characteristics at that value  for instance, seven for all sensors and 

any further decrease would be bad. Since sliding-window techniques do buffering locally and transmit 

only compressed data to the cloud, the feature count is substantially larger. Approaches using the 

sliding window necessitate edge buffering, leading to a significantly higher feature count and the 

prospect of higher reduction rates. Given its track record of performance in HAR, the sliding window 

approach is also likely to yield improved accuracy [26]. 

 

You can see that AE and PCA are used for every data reduction variation in Table I. The data 

reduction rates shown in Table I are consistent regardless of whether PCA or AE is utilised. In AE, 

the reduction degree is modulated by adjusting the bottleneck layer neuron count, whereas in PCA, it 

is modulated by adjusting the number of main components. Each edge node has an associated AE that 

is in charge of lowering the data coming at that node in the location-based and similarity-based 

methods. Likewise, PCA operates autonomously on every node. 

 

Three situations, three window widths, five reduction rates, and two algorithms (AE and PCA) 

comprise a total of ninety data reduction tests with sliding windows. Furthermore, six experiments are 

available for direct reduction: 2-algorithms per scenario. With this, 96 data reduction trials have been 

conducted. 

 

2) it can't be undone; the vector magnitude is the sole method that doesn't allow for that. This leads to 

a decrease of 3:1 when dealing with three-axis data, such as that captured by an accelerometer, 

gyroscope, and magnetometer. The reduction can be applied with or without the sliding window, just 
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as reversible techniques. There are seven characteristics instead of twenty-one when the window is 

removed from the vector magnitude for all data. Reduced characteristics for sliding windows 25, 50, 

and 100 are 175, 350, and 700 instead of 525, 1050, and 2100. Three trials for each window size plus 

one for direct reduction (no sliding window) yields a total of four. 

 

C. Machine learning on the cloud 

Sending data reduced on the edge to the cloud for final processing is the standard procedure. This last 

phase of the HAR task is activity type recognition, often known as classification. A single model in 

the cloud integrates data from all edge nodes, in contrast to the distributed architecture of the edge, 

where individual ML models analyse data as it arrives at each node. As shown in Figure 1, we will 

now examine three methods for doing this task: 

 

1) ML with Reduced Data: Nodes at the edge provide their reduced data straight to the classification 

process. This method works for reduction strategies that can be undone as well as those that can't. A 

feed-forward NN (FFNN) was employed for the last classification in the HAR challenge. Twelve (12 

actions) output nodes make up the FFNN, whereas the number of input nodes decreases as the 

reduction rate increases and is proportional to the number of features remaining after data reduction. 

The amount of input features determined the number of hidden layers and neurons employed. For 

input features greater than 350, FFNN had three hidden layers; for input features less than 350, it had 

two hidden layers. For each of the 420 input characteristics, the hidden layer node count reduced 

progressively; for instance, from 420-128-32-12. This method demonstrated good accuracy in 

experiments with varying numbers of neurons in the buried layer. 

 

2) ML With Reproduced Data: First, you reduce the original data to a more manageable form, and 

then you recreate it. Then, you categorise it. This works only when data reduction on the edge is done 

using reversible approaches. Because the amount of features here is equal to the number of features in 

the original dataset, this method is computationally more expensive and needs more complicated 

models compared to ML with reduced data. The data that is reproduced, however, might serve 

different purposes much like the original data. Classification is done using the FFNN in the same way 

as with ML with decreased data; the same approach is used for selecting the amount of layers and 

neurons in hidden layers. A larger number of layers and neurons will be formed by using the same 

technique with replicated data rather than reduced data, due to the higher number of characteristics 

with the former. 

 

3) ML Runs Wholly on the Cloud: This isn't an edge-cloud architecture, but rather a tried-and-true 

method of ML that relies on the cloud. Only for the sake of comparison is it taken into account in the 

evaluation. Classification once again makes use of FFNN, and the same method as with edge-cloud 

techniques was utilised to determine the number of layers. 

 

The assessment takes into account 96 trials conducted for reversible procedures, as mentioned in 

Section V.B.1. A total of 192 tests utilising reversible procedures were conducted using two cloud-

based approaches: one with decreased data and the other with repeated data. Section V.B.2 has four 

experiments with nonreversible techniques, whereas Section V.B.2 contains four experiments 

involving totally cloud-based ML, one of which is direct and three of which are sliding windows. 

There will be a grand total of 200 trials conducted. 

 

Table I:Features for Reversible Approaches Before and After Reduction (WINDOW SIZE 100) 
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VI- Results and Discussion 
Prior to delving into the conclusions, this part offers the results of data reduction and network traffic 

analysis. 

 

A. Reducing Data 

Due to their prevalence in HAR research [27], in which TP and TN denote true positives and true 

negatives, and FP and FN denote false positives and false negatives, respectively, accuracy, precision, 

and recall are utilised for the evaluation. 

 

 

 

 

 

 

As a first step in facilitating comparisons, Table II displays the accuracy of conventional ML that does 

not employ data reduction. The accuracy of classification for reversible approaches is displayed in 

Table III, following a data reduction of 66% and a sliding window size of 100. Regardless of the 

algorithm (AE or PAC) or situation (all sensors, location-based, or similarity-based), the sliding 

window technique provides superior accuracy than direct techniques, much as traditional ML (see 

Table II). The reduced and reproduced techniques, as well as AE and PCA, are essentially 

interchangeable. Despite a 66% decrease in data, the accuracy is comparable to that of conventional 

cloud-based ML. Along with accuracy, precision and recall were computed, and they exhibited 

patterns that were comparable to those in Table III. 
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Table II: Entire Cloud Machine Learning for Accurate Classification 

 

Table III: 66% Data Reduction, Reversible Approaches, and Sliding Window 100 for 

Classification Accuracy 

 

Figure 4:Methods for accurate classification: direct (no Window), reversible (with a 66% 

reduction), and nonreversible (with no reduction). 

 

In contrast to Table III, which just covers reversible ways, Fig. 4 incorporates both reversible and 

nonreversible methods, although both deal with the 66% decrease. When compared to the 

nonreversible vector magnitude method, all reversible methods provide substantially better results. 

Figure 4 and Table III both examine the accuracy of classification with a 66% reduction in data, with 

Table III focusing exclusively on sliding window 100. In order to examine how data reduction rates 

affect accuracy, Fig. 5 shows how accuracy varies in relation to the reduction rate for all sensors, 

location-based, and similarity-based situations. From 66% to 90% reduction, accuracy declines 

gradually, and at 95% reduction, the decline is more dramatic. On the whole, AE outperforms PCA in 

terms of accuracy, and classification using replicated data is marginally superior than reduced data. 

Data reproduction somewhat improves HAR accuracy by making advantage of information already 

present in the encoder portion of AE or the PCA eigenvectors to enlarge the encoded values. The 

accuracy decreases by less than 0.25% compared to classical ML, even at a 95% reduction rate. 

The assessment for window size 50 is shown in Figure 6, which is identical to Figure 5. Sliding 

window 50 causes a decline in accuracy with changes to the reduction rate, in contrast to window size 

100, where the accuracy was fairly constant for reductions ranging from 66% to 80%. While both 
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Windows 100 and 50 achieve 95% reduction accuracy, Window 50 is preferable due to its shorter 

FFNN training time and reduced edge data gathering requirements. When comparing methods with 

different window sizes, AE using recreated data performs marginally better with a 50-size window 

compared to the others. 

 

Figure 7 next displays the accuracy for a 25-pane window. Classification using reduced and 

reproduced data yielded comparable results with 100 and 50 pixel windows, however with 25 pixel 

windows, reduced data methods generate worse results than reproduced data approaches across the 

board for both PCA and AE algorithms. The most accurate reduction rates were nearly always 

attained by using recreated data in AE, as was the case with other window widths. Results for AE 

using recreated data from windows 25 and 100 are comparable; however, window 25 may be 

preferable due to its shorter training period, whereas window 100 exhibits somewhat superior 

accuracy. 

 

While Figs. 5-7 illustrate how reversible techniques fare with varying window widths, Fig. 8 shows 

how sliding window approaches fare against direct ones, which is as crucial. This graphic compares 

direct techniques to sliding window approaches with the same reduction rate, while direct approaches 

are only examined for 66% reduction rates. No matter the size of the window, all sliding window 

methods perform better than direct approaches, further proving that sliding windows are beneficial. 

Reducing the window size to 25 reduces accuracy for reduced data, as shown in Figures 5-8, while 

increasing the window size to 100 or 50 achieves equivalent accuracy. 

 

Fig. 9 finalises the discussion by showing the accuracy of nonreversible techniques for various 

window widths. Similar to reversible techniques, 100 and 50 window sizes produce comparable 

results, whereas 25 window size yields poorer accuracy. The accuracy was shown to increase by about 

10% when sliding windows were introduced to the non-reversible technique with windows (see Fig. 

9) compared to the identical approach without windows (direct) (see Fig. 4). The nonreversible vector 

magnitude methodology achieves reversible-level precision with sliding windows; nonetheless, vector 

magnitude is computationally far easier than the other methods. 

 

B. Data Transfer Over a Network 

So far, the investigation has taken data reduction into account in relation to many characteristics. But 

because to network overheads, real traffic won't precisely track the feature reduction rates once the 

system is up and running. The edge-cloud architecture that was described has been used to mimic 

network traffic analysis. As mentioned in Section IV-B, location and similarity-based situations 

necessitate three nodes, one for each location/similarity group, but the direct technique only requires 

one edge node. An individual virtual computer with 2 GB of RAM and a single-core CPU is used to 

mimic each edge node. An octa-core processor and 6 GB of RAM on a Windows server were used to 

mimic the cloud. Sockets allowed for the measurement of bandwidth consumption once the TCP-IP 

protocol had been used to establish connection between the server and the edge nodes. The ability for 

several edge nodes to connect with the server at the same time is guaranteed by a multithreaded socket 

server. Nodes near the network's periphery house the trained AEs' encoders, while servers host the 

decoders and classification models. Network traffic would remain unchanged regardless of changes to 

the edge nodes' computing capability; nevertheless, this capacity must be adequate to perform data 

encoding. The sliding window size determines the minimal computational resources needed at the 

edge, which are based on the size of the encoder network. 

 

Table IV shows the comparison between the network traffic in each scenario with and without 66% 

feature reduction. Additionally, it provides data on the percentage of traffic reduction, which shows 

the amount of traffic reduced compared to the identical situation without reduction, as measured in 

years. Take, for instance, a 49.71% drop in traffic for all sensors during sliding window 100. This 

would result in a decrease from 7129 MB for no reduction to 3585 MB for all sensors during sliding 

window 100. The network traffic in the three cases (all sensors, location-based, and similarity-based) 

is quite consistent with one another. Network traffic is significantly greater for situations with sliding 

windows compared to direct approaches, regardless of whether the data is decreased or not. 
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This is because the transfer includes the same values more than once since various sliding windows 

provide readings with a sliding step size of k = 1. If the application permits delays in window length, 

this may be circumvented by utilising the siding step that is proportional to the window's length. 

Figure 10 shows a comparison of several data reduction strategies and scenarios for a 66% decrease in 

network traffic. Table IV's findings that none of the scenarios  all sensors, location, and similarity  

significantly affect traffic reduction are also applicable here. Although all techniques and scenarios 

reduced features by 66%, different approaches reduced network traffic in different ways. The direct 

approach reduced network traffic by around 59%, and the reduction rate declined as the window size 

rose. When the total amount of data delivered varies, the resulting changes in network overheads are 

what create these fluctuations. There has to be a balance between the two, since window size 25 

reduces network traffic but is less accurate than 50 and 100. 

Figure 5:Accuracy of classification for various reduction rates: 100 window size. 

 

 

Figure 6:Accuracy of classification for various reduction rates: 20 window size. 

 

Figure 7:Accuracy of classification for various reduction rates: 25 window size. 
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Figure 8:Improved classification accuracy (66 percent decrease rate) using direct and sliding 

window methods. 

 

Figure 9:Precision in classification: magnitude of a vector with sliding windows. 

 

 

Figure 10:The mitigation of network traffic. 
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Table IV:No Reduction in Network Traffic and a 66% Decrease in Data 

 

C. Discussion 
The shown method can reduce data transmitted to the cloud by as much as 80% without substantially 

sacrificing accuracy, according to the experimental findings. Reducing data that has already been 

preprocessed using the sliding window approach does not diminish the accuracy achieved using the 

sliding window technique. The accuracy for all three cases (all sensors, location-based, and similarity-

based) is lowered with a window size of 25, although it is equivalent for 50 and 100. Figure 5 

demonstrates that accuracy remains reasonably constant up to a 90% decrease, indicating that with big 

enough sliding windows, even a 90% reduction only leads to a tiny loss of accuracy. 

 

Data aggregation at the edge is a drawback of sliding window situations. Network traffic will remain 

high with sliding step one, even with reduced data delivered to the cloud on every time step, because 

sensor readings will correspond to separate windows. To save network traffic and ensure that readings 

do not belong to distinct windows, a sliding step that is equal to or bigger than the window size is 

used; nevertheless, the application scenario must account for a delay of window length. 

 

Using recreated data for classification significantly outperformed using reduced data; this disparity 

became more pronounced for narrower windows (refer to Fig. 8). Both AE and PCA were equally 

effective for 50 and 100 window sizes, however AE achieved better results for all reduction rates 

when using a 25 window size (Figs. 5-7). This could be because, unlike PCA's linear transformations, 

which failed to capture complicated relations, AE's nonlinear transformations were able to do just 

that. 

 

While both location- and similarity-based methods produced identical findings across all sensors 

(refer to Fig. 4), location-based methods allow for data reduction on separate nodes, which is a 

benefit. In addition, geo-distributed situations may benefit from the location-based strategy, which 

places edge nodes closer to data sources. 

 

Table IV and Figure 10 show that, because of network overheads, the data reduction rate is higher 

than the rate of network traffic reduction. Also, because they cause a lot of traffic on the network, 

overlapping sliding windows should be avoided. When training networks, AE, and classification 

FFNN, overlapping windows are still acceptable; however, edge-cloud deployments should avoid 

them. 

 

While this method was tested on the HAR task using the MHEALTH dataset, it is applicable to a wide 

range of IoT tasks and datasets. Data reduction rates will be high if sensor values are highly correlated 

with one another. In addition, the reduction rates for various applications and ML jobs will vary based 
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on the relative value of the data portions used for those particular activities. 

 

VII- Conclusion 
The old way of doing machine learning with data from the Internet of Things was moving the data to 

a central location, like the cloud, for processing. This would increase latency and strain 

communication networks due to the proliferation of linked devices. 

 

In this piece, we looked at how to lessen network traffic and delays by combining IoT data with cloud 

and edge computing for machine learning. A location-based scenario grouped data according to the 

locations of the IoT devices, a similarity-based scenario grouped data according to the similarities of 

sensors, and an all-sensors-together scenario considered all the data at once. Two nonreversible 

methods, AE and PCA, as well as one nonreversible method, vector magnitude, were considered in 

the HAR task evaluation. The results shown that by utilising a broad sliding window during 

preprocessing, data and associated network traffic might be decreased by as much as 80% without a 

noticeable decrease in accuracy. While all sensor approaches achieved comparable accuracy, location 

and similarity-based methods might reduce on distinct edge nodes. 

 

Applying the provided edge-cloud technique to other applications and sensor types will be the focus 

of future research. 
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